
CSC579: Learning-Based Scheduler for Multipath QUIC

Shirley Shu, Tianfang Chang

April.11 2022

Abstract

Multipath transport protocols utilize multiple network paths (e.g., WiFi and LTE)

to achieve improved performance and reliability. The scheduler of a multipath transport

protocol determines how to distribute the data packets onto different paths. However,

multipath schedulers have many challenges to solve. It’s hard for a scheduler to keep

efficient all the time when dealing with heterogeneous paths with dynamic path char-

acteristics (i.e., packet loss, fluctuation of delay). Thus, it’s important to design a

learning-based scheduler to adapt to real-time changes in the network, which can sig-

nificantly enhance the efficiency of transport. Multi-armed bandit (MAB) problem is

a classic reinforcement learning problem that exemplifies the exploration-exploitation

trade-off dilemma. Thus, we formulate the scheduler as a MAB problem and try to

apply Upper Bound Confidence (UCB) algorithm to the optimization. To evaluate the

performance of the MAB-based scheduler, we implement the scheduler in the MPQUIC

module on the ns-3 platform. The resulting scheduler allows an increase in application

goodput and a decrease in complete time as compared with two widely used scheduler

algorithms, Round-Robin and Min-RTT.

1

1 Introduction

Over the last few decades, advances in computer networking have accelerated. Today’s

end devices have many network interfaces that operate in various modes. For quick and

reliable data sharing, multipath transport protocols allow the simultaneous use of various

radio access technologies, such as WiFi and cellular. Specifically, the sender distributes

application data across multiple available radio interfaces. The receiver reassembles and

reorders data from various paths, making it transparent to the application. By doing so,

multipath transport protocols aim to improve both transmission capacity and reliability over

single-path alternatives.

MPTCP [1] is a multipath extension on top of TCP, supporting transmission with mul-

tiple paths in the transport layer. Thanks to its outstanding features such as throughput

aggregation and congestion shift, it has been considerably adopted for commercial use. An

example is its usage since iOS11. Nevertheless, the next-generation networks pose a set of

challenges to the protocols built upon the TCP/IP stack, e.g., connection breakage, and

Head-of-Line (HoL) blocking issues. Motivated by the success of MPTCP, multipath exten-

sion over QUIC (MPQUIC) [2] is more promising to satisfy the demands of future applica-

tions. Even though MPQUIC is still under discussion by Internet Engineering Task Force

(IETF), there are already some related works around the protocol implementation [3].

In multipath transport protocols, the scheduler determines how to distribute data across

the available paths. The application’s data packets are stored in the second buffer, and the

scheduler assigns each packet to a separate interface based on the scheduling strategy. One

of the most difficult aspects of developing a multipath scheduler is implementing a strategy

that addresses the varied features of routes, such as the mix of WiFi and LTE networks.

When the pathways are diverse, particularly in terms of latency and loss, sent packets arrive

at the destination out of order, resulting in HoL blocking, which reduced the aggregated

performance.

Existing research around the scheduling algorithms base on stable network scenarios

2

or focuses on the specific requirement by application. Blocking Estimation-based MPTCP

Scheduler (BLEST) [4] and the Earliest Completion First (ECF) [5] schedulers tackle the

issue with heterogeneous paths by introducing a wait action, which allows the scheduler to

decide whether or not to send a packet until better conditions arise. These schedulers per-

form well when channel properties are fairly stable, but they were not designed to handle

dynamically changing characteristics. Priority-Based Stream Scheduling (PStream) [6] finds

that scheduling without the recognition of the stream features can aggravate inter-stream

blocking when sharing paths. It is proposed to decrease the website loading time by schedul-

ing high priority packets first, but not sufficient in other scenarios, like file downloading and

video streaming.

However, as illustrated in Fig. 1, in a multipath scenario, the characteristics of the paths

may be heterogeneous and they often vary over time, especially in wireless networks(e.g.

WiFi or LTE). A multipath scheduler should take the dynamicity of each path into account

while determining the scheduling policy [7]. For example, the delay characteristics in a public

area of a WiFi network can vary significantly over time due to changing numbers of users

creating varying levels of congestion, resulting in different dynamicity levels throughout the

day. Such dynamic changes are particularly widespread in today’s WiFi and LTE networks

and are predicted to become even more prevalent in the next 6G technology. Considering

the dynamicity, We propose a state-of-the-art multipath scheduler based on Multi-armed

Bandit and found that it consistently outperformed the other typical schedulers.

The contributions of our work can be summarized as follows:

• We introduce a new learning-based multipath packet scheduling. The research problem

is fundamental, and it can tackle some MPQUIC performance issues and adapt to the

dynamic heterogeneous network environments.

• We first formulate the multipath scheduling problem and propose a lightweight and

deployable online learning solution to this problem. More specifically, a deterministic

strategy is derived by using an RL algorithm applied in Multi-Armed Bandit(MAB)

3

Figure 1: Illustration of MPQUIC scheduler.

scenarios.

• We implement the scheduler in the ns-3 and evaluate it over both emulated and real

network conditions. We conduct extensive experiments to evaluate its performance. It

shows the improvement of the goodput compared to MinRTT or Round-Robin, and

it significantly outperforms the state-of-the-art schedulers on a variety of performance

metrics.

The rest of this report is organized as follows. Section 2 summarizes the background and

motivation, including the introduction of MPQUIC, existing schedulers, problem verification

and the multi-armed bandit. Section 3 presents the system model and the problems to

address. It elaborates on the detailed design of the MAB-based scheduler algorithm. To

verify the performance gain of our proposal, experiments using NS-3 along with detailed

analyses are given in Section 4, followed by concluding remarks and further research issues

in Section 5.

4

2 Background and Motivation

2.1 MPQUIC

The multipath QUIC protocol intends to compensate for the missing features in QUIC by

utilizing different paths that exist between a client and a server [2]. The layered structure

of MPQUIC is illustrated in Fig. 2.

HTTP

TLS MPTCP QUIC MPQUIC

TCP UDP

Scheduler

TCP

Scheduler

TCP UDP UDP

IP

Application

Transport

Network

Streams

Data Flow

Figure 2: Structure of MPQUIC in comparison with others.

Based on several salient features and improvements in QUIC, the design specifications of

MPQUIC [2, 3] are described in the following components.

Path Identification. MPQUIC introduced a path identification in its packet header

to determine different paths in use. QUIC uses increasing packet numbers to identify and

retransmit the lost packet. However, if all packets share one numbering space in MPQUIC

and are sent over different paths, they might arrive out of order, resulting in a misinter-

pretation of packet loss. To deal with this issue, MPQUIC designed a per-path numbering

space, which means packet numbers on different paths are isolated from each other and the

sequential feature occurs only within that path.

Path Management. A path manager manages the path creation and removal in

MPQUIC. In QUIC packets, the payload is comprised of multiple frames that can store

stream data or control information. Benefiting from this frame structure, the extension of

5

QUIC can define some specific types of frames to store the multipath information. To man-

age multiple paths, new frames, e.g., ADD ADDRESS, REMOVE ADDRESS, and PATH ABANDON, are

introduced to help the path establishment and removal.

Packet Scheduling. The path scheduler in MPQUIC is responsible for allocating pack-

ets onto different paths. There have been numerous scheduling policies proposed, each

with pros and cons depending on the network scenarios and application requirements. The

simplest scheduling algorithm is Round-Robin, which schedules packets on different paths

sequentially, but may cause high latency when two flows have a large difference in bandwidth

and round-trip time (RTT). So, MPQUIC uses Min-RTT by default, which is implemented

in the Linux kernel for MPTCP. Provided that the congestion window still has space, the

path with the lowest measured round-trip time (RTT) is preferred.

Multipath transport protocols utilize multiple network paths (e.g., WiFi and LTE) to

achieve improved performance and reliability, compared with their single-path counterparts.

The scheduler of a multipath transport protocol determines how to distribute the data pack-

ets onto different paths. However, multipath schedulers have many challenges to solve. It’s

hard for a scheduler to keep efficient all the time when dealing with heterogeneous paths with

dynamic path characteristics (i.e., packet loss, fluctuation of delay). Thus, it’s important to

design a learning-based scheduler to adapt to real-time changes in the network, which can

significantly enhance the efficiency of transport.

2.2 Scheduler

Research around the scheduling algorithms are getting popular in recent year. Here we

introduce some typical works for packet scheduling algorithms in transport-layer protocols.

Default Algorithms. The basic scheduling algorithm in multipath transport-layer pro-

tocols are Round-Robin, which arranges packets on each paths one-by-one. This idea is

easy to implement but causes large gaps when two paths have distinct data rates or delays.

Min-RTT is introduced to deal with this problem, which always select the path that have

6

lowest round-trip-time (RTT). However, this algorithm will ignore the slow paths, which

may not fully uses all essential paths. Blest [4] aims to deal with the problem of head-of-line

blocking when multiple paths have heterogeneous data rates and delay. The main idea of

this algorithm is to try to make the packets arriving in sequence with a prediction of the

number of packets during RTT. The experiment shows it performs well with bulk send, but

is not that good with websites or videos.

Improved Algorithms. Based on the idea of Blest, ECF [5] not only utilize the in-

formation of RTT but also uses other relevant information of paths, like the congestion

window, to improve the scheduling algorithm. [8, 9] designed the stream-aware scheduling

with the features of MPQUIC, refering the idea of ECF over MPTCP. With the popularity

of MPQUIC, the scheduling algorithms need to consider not only arranging packets over

different paths but also take the priority streams into account. Pstream [10, 6] finds that

scheduling without the recognition of the stream features can aggravate inter-stream block-

ing when sharing paths. Thus, it proposes Priority-Based Stream Scheduling which has a

global scheduler for allocating streams to paths and the stream managers for each path.

It uses a job shop scheduling algorithm to distribute streams’ data to heterogeneity paths

according to their priorities and sizes so that it can decrease the overall transmission time.

It also introduces a bandwidth sharing mechanism for streams on the same path.

Learning-based Algorithms. Since the network in real world is always dynamic and

unsatable, some researchers consider to apply online learning algorithms with the scheduling

strategy. [11] introduced an approach to apply deep reinforcement learning on MPQUIC

scheduler. It uses Q-learning to train the data collected by running MPQUIC srtt scheduler,

then apply the DNN model (trained by Q-learning) to the new scheduler. This paper shared

a way of utilizing some existing libraries to connect with the MPQUIC scheduler, but the

performance is not that significant with higher delay and background traffic. In addition,

Peekaboo [12] uses online learning to improve the scheduler. The speed at which the network

changes can surpass the learning speed achieved through online learning. Few data, like

7

mobility, may not help finish training and get a good schedule policy. [13] extends Peekaboo

in 5G scenarios which has more homogeneous contexts, like average RTT, throughput, and

loss rate. It shows that learning based scheduler (Peekaboo) performs a bit worse in a

dynamic scenario as it needs frequent retraining. In the worst case, when the retraining is

completed, the environment has already changed again. Thus, lifelong learning scheduler

(or learning-based scheduler with a small training set) could be considered as our further

research.

2.3 Problem Verification

To illustrate the unresolved performance issues of packet scheduling in MPQUIC, we conduct

experiments on existing schedulers under different network scenarios. Particularly, we tested

two widely used scheduler algorithms, Round-Robin and Min-RTT, with 10 rounds for each

transmission.

The experiments were conducted with the topology shown in Fig.3 that two subflows

each with TCP background traffic respectively. We first consider two subflows that have the

same data rate and delay. The data rate for both subflows is 10 Mbps with a 10 ms delay.

Fig. 4a illustrates the throughput comparison for Round-Robin (left-side) vs. Min-RTT

(right-side). For Round-Robin, the throughput of both subflows is around 5 Mbps, which is

close to the ideal data rate. For Min-RTT, the throughput of subflow 0 is close to the ideal

data rate, but the throughput of subflow 1 is around 2.5 Mbps, which is not fully used.

To encounter the transmission close to the real world, our second experiment scenario

simulates the transmission similar to mobile devices, which contains both Wi-Fi and LTE

network and is able to do packets transmission with both interfaces at the same time. From

our daily experience, we know that mostly Wi-Fi has a higher data rate than LTE. The

data rate for subflow 0 is 10 Mbps with a 10 ms delay, which is used to simulate the LTE

connection. The data rate for subflow 1 is 50 Mbps with a 10 ms delay, which is used to

simulate the Wi-Fi connection. Fig. 4b illustrates the throughput comparison for Round-

8

TCP
Client 0

TCP

Subflow 0
MPQUIC

Client

TCP
Server 0

MPQUIC
Server

TCP

Subflow 1

TCP
Client 1 TCP

Server 1

Figure 3: Topology of two subflows each with TCP background traffic respectively

 2

 3

 4

 5

 6

 7

 8

 9

S0 S1 S0+S1 S0 S1 S0+S1

T
h
ro

u
g
h

p
u
t

(M
b

p
s)

(a)

 0

 5

 10

 15

 20

 25

S0 S1 S0+S1 S0 S1 S0+S1

T
h
ro

u
g
h

p
u
t

(M
b

p
s)

(b)

Figure 4: Throughput comparison for Round-Robin vs. Min-RTT with (a) the same data
rate of subflows (S0: 10 Mbps, S1: 10 Mbps) and (b) the different data rates of subflows
(S0: 10 Mbps, S1: 50 Mbps).

Robin (left-side) vs. Min-RTT (right-side). For Round-Robin, the throughput of subflow 0

is around 5 Mbps, which is close to the ideal data rate, but subflow 1 is not fully used. For

Min-RTT, the throughput of subflow 1 is around 20 Mbps, which is close to the ideal data

rate, but subflow 0 is not fully used.

From the experiment, Round-Robin has a better performance with a similar data rate

while Min-RTT outperforms with a distinct data rate. Thus, we verified the problem that the

default schedulers have limitations that cannot always show good performance with different

network scenarios.

9

2.4 Bandit Algorithm Analysis

The most important feature distinguishing reinforcement learning from other types of learn-

ing is that it uses training information that evaluates the actions taken rather than instructs

by giving correct actions. This is what creates the need for active exploration, for an explicit

search for good behaviour.

The multi-armed bandit problem is a classic problem that well demonstrates the explo-

ration vs exploitation dilemma. Imagine you are in a casino facing multiple slot machines

and each is configured with an unknown probability of how likely you can get a reward at

one play.

Exploration will give up some known reward information and try some new options -

that is, in a certain state, the algorithm may have learned what action to choose to make

the reward larger, but it cannot be done every time. The same choice, maybe another choice

that has not been tried will have a greater reward, that is, Exploration hopes to explore

more potential information. Exploitation refers to maximizing rewards based on known

information.

The difference can also be simply understood that the Exploration algorithm searches

for the global optimal solution and is not based on the existing experience; the Exploitation

algorithm searches for the local optimal solution and maximizes the use of the existing

experience information.

• We have k-armed bandit with winning probabilities, p1, ..., pk.

• At each time step t, we take an action(pull a arm) on the machine and receive a reward

rt.

• A is a set of actions, each referring to the interaction with one arm. The value of action

a is the expected reward, Q(a) = E[r|a] = p. If action at at the time step is on the ki

arm, then Q(at) = pi.

10

• R is a reward function. In the case of a k-armed bandit, we observe a reward r in

a stochastic fashion. At the time step t, rt = R(at) may return reward 1 with a

probability Q(at) or 0.

Let Qt(a) denotes the estimated value of action a(ki arm) at time step t.

If Qt(a) is an accurate estimate of q∗(a), we can select actions using Qt(a). Greedy action

estimate of q∗(a): At
.
= argmaxQt(a)

Sample average estimate of q∗(a):

Qt(a)
.
=

sum of rewards by choosing a prior to t

number of times of choosing a prior to t

If a is chosen more often, the estimate becomes more accurate. Exploratory action selection

to improve value estimation.

Greedy action selection exploits current knowledge of action value. Exploitation maxi-

mizes the expected reward for the current step.

Non-greedy action selection explores other actions and improves their value estimates.

Exploration may improve total reward in the long run.

Constant memory requirement and constant per-time-step computation:

NewEstimate = OldEstimate+ StepSize[NewObervation−OldEstimate]

Sample average estimate:

Qt(a) = Qt−1(a) +
1

t
[Rt(a)−Qt−1(a)]

Rt(a) is the reward after selecting action a at time step t.

To solve the non-stationary problem, the updated samples will be significant, so we can

11

Figure 5: ε−greedy

use a constant discount factor alpha, we can rewrite the update equation like this:

Qt(a) = Qt−1(a) +
1

α
[Rt(a)−Qt−1(a)]

Note that we have replaced t with a constant alpha, which ensures that the most recent

samples have a higher weight, and these most recent samples more determine the delta.

Using the epsilon probability, we will choose a random action (exploration) and choose

the action with the largest Qt(a) with probability 1− ε.

With probability 1− ε, we choose the action with the maximum value (argmax Qt(a))

With probability ε, we randomly choose an action A a set of all actions.

For example, if we have a problem with two actions A and B, then the epsilon greedy

algorithm works as follows:

The UCB algorithm keeps a track of the mean reward for each arm up to the present trial

and also calculates the upper confidence bound for each arm. The upper bound indicates

the uncertainty in our evaluation of the potential of the arm.

The algorithm is highly unsure of an arm’s potential if it has a very high upper confidence

bound and hence chooses the arm because of a great exploration opportunity.

At
.
= arg max

a
[Qt(a) + c

√
log t

Nt(a)
]

Exploitation:

12

• Qt(a) represents the exploitation part of the equation. UCB is based on the principle of

“optimism in the fact of uncertainty”, which basically means if you don’t know which

action is best then choose the one that currently looks to be the best. Taking this half

of the equation by itself will do exactly that: the action that currently has the highest

estimated reward will be the chosen action.

Exploration:

• The second half of the equation adds exploration, with the degree of exploration being

controlled by the hyper-parameter c. Effectively this part of the equation provides a

measure of the uncertainty for the action’s reward estimate.

• If an action has not been tried very often, or not at all, then Nt(a) will be small.

Consequently, the uncertainty term will be large, making this action more likely to be

selected. Every time an action is taken we become more confident about its estimate.

In this case Nt(a) increments, and so the uncertainty term decreases, making it less

likely that this action will be selected as a result of exploration (although it may still

be selected as the action with the highest value, due to the exploitation term).

• When an action is not being selected, the uncertainty term will grow slowly, due to

the log function in the numerator. Whereas, every time that the action is selected,

the uncertainty will shrink rapidly due to the increase in Nt(a) being linear. So the

exploration term will be larger for actions that have been selected infrequently, due to

the uncertainty in the estimates of their rewards.

• As time progresses the exploration term gradually decreases until eventually actions

are selected based only on the exploitation term.

13

3 Problem Description and Solution Framework

Based on the discussions in previous sections, we present here in detail the design and

implementation of the MAB-based scheduler. We first describe the learning aspects, i.e.,

the online learning of a deterministic scheduling decision. Then, we also depict how these

aspects are combined and deployed in the MPQUIC.

3.1 Problem Formulation

The traditional scheduler (e.g. Min-RTT) is similar to the greedy algorithm. It may fall

into local optimality when it finds an efficient path in the past. However, such an efficient

path may not always adapt to the dynamic network at a later time. Thus, we consider using

MAB (Multi-armed bandits) as the core of learning. MAB is a simple but very powerful

framework for algorithms that make decisions over time under uncertainty. It’s a good way

to face the trade-off between ”exploitation” and ”exploration” when we tried to find an

efficient schedule algorithm. Specifically, we formulate the problem with Upper Confidence

Bound (UCB). Let (Xt)
n
t−1 be a sequence of independent 1-subgaussian random variables

with mean µ and µ̂ = 1
n

∑n
t=1Xt, for all δ ∈ (0, 1),

P

(
µ > µ̂+

√
2 log (1/δ)

Ti(t− 1)

)
≤ δ (1)

A typical MAB model consists of agent, arm, state, action, reward, and regret, whose

definitions in our framework are explained in the following.

Agent: an agent is an entity in the system that performs a learning task. In the MPQUIC

packet scheduling problem, the agent is responsible for determining the traffic distribution

over multiple subflows on the sender side of an MPQUIC connection.

Arm: in the MPQUIC packet scheduling problem, we consider each subflow is an arm

i, where (1 ≤ i ≤ k). We have k-subflows in total.

State: a state of the system is the information of a snap shot of the environment that can

14

be observed by an agent. At the beginning of each time step, the agent observes the system

state. Assume in the t-th time step, the system state is represented by st = (st,1, st,2, ..., st,k),

where st,i is the observed state of the i-th subflow which can be represented by a tuple

st,i = (xt,i, dt,i, ut,i), where

• xt,i is the subflow throughput measurement in time step t;

• dt,i is the subflow mean RTT in time step t;

• ut,i is the number of lost packets in time step t;

Action: an action indicates how an agent response on the observed state. In MPQUIC

packet scheduling, an action is a scheduling decision, which determines how to distribute

the current traffic over multiple paths. An action can be represented by a vector at =

(p1, p2, ..., pk), where pi = 1 means the packets will be delivered over the i-th subflow. Oth-

erwise, pi = 0. The action set is represented by

At = arg max
i
µ̂i(t− 1) +

√
2 log f(t)

Ti(t− 1)
(2)

where µ̂i is the expected value of rewards with i-th subflow, and Ti is number of samples

choosing subflow i in t-th round. f(t) = 1+ t log2(t) is the error probability.
√

2 log f(t)
Ti(t−1) works

for the exploration. During the previous rounds, if the use of subflow i smaller,
√

2 log f(t)
Ti(t−1)

larger. So, it is more possible to choose i if µ̂i is same.

Reward: In the t-th time step, the agent observes the state st, and takes an action (pull

an arm) at on the machine and observe a reward Xt. After applying the action, the state of

the environment transitions to s, t+ 1 and the agent receives a reward by taking the action.

A reward function is used to evaluate the long-term performance of MPQUIC, which could

be represented as

Xt,i =
MSS

dt,i
∗ 1
√
ut,i

(3)

where MSS is maximum segment size and ut,i is number of lost packets in t-th round.

15

Regret: a regret indicates the performance of the MAB algorithm. In MPQUIC packet

scheduling, our objective is to maximize the total rewards. So, we measure the performance

with Regret

Rn = nµ∗ − E[
n∑

t=1

Xt] (4)

where µ∗ = maxi µi, µi is the mean reward of Pi.

Given the above preliminaries, the MPQUIC packet scheduling problem can be repre-

sented by a MAB problem: learning an optimal policy to maximize the expected cumulative

reward in the episode.

3.2 Current Algorithm

The overall MAB-based scheduler algorithm is shown in Algorithm 1. We first need the

number of subflows as the input of the algorithm. During the transmission process, the

scheduler will choose each subflow once to get the initial reward for each subflow. Then,

for each round of distributing packets by the scheduler, it observes the new reward for

each subflow calculated by the state. The expected value of total rewards is updated after

observing the new states. With the value of rewards on each subflow, the scheduler chooses

the action that maximizes the rewards. It then processing the transmission based on the

action.

Algorithm 1 MPQUIC Scheduler with UCB

Require: k
1: Choose each action once;
2: for t ∈ 1, 2, ..., n do
3: for i ∈ 1, 2, ..., k do
4: Observe reward Xi(t− 1) = MSS

dt,i
∗ 1√

ut,i
;

5: Update µ̂i(t− 1) = expected value of Xi in previous t− 1 rounds;
6: end for

7: Choose action At = arg maxi µ̂i(t− 1) +
√

2 log f(t)
Ti(t−1) ;

8: Process action in scheduler;
9: end for

16

4 Performance Evaluation

4.1 Experiment Setup

Recall that our design will be based on the up-to-date multipath transport-layer protocol,

MPQUIC. Since the experiments on transport-layer protocols are difficult to realize with the

hardware in the real world, a network simulator is a valuable choice with its various modules,

high precision, and low cost. Exploring the popular simulators, we selected ns-3, a discrete-

event network simulator for Internet systems, targeted primarily for research and educational

use. Benefiting from the open-source contribution, we can use the ns-3 QUIC module [14]

with some multipath extension to implement our design. The multipath extension of the

QUIC module is a previous research work, which is able to have the basic data transmission

over two paths.

We implement the MAB-based scheduler in MPQUIC in ns-3 according to our solution

framework. To verify the performance of our MAB scheduler, we experiment with it in both

heterogeneous and homogeneous network environments to compare its performance with

other multipath schedulers.

4.2 Performance Analysis

We test for transmitting a file with 8 MB, which is using the bulk sending application. In

the first scenario, we consider two-path have the same data rate and delay which is 25 Mbps

with 80ms delay, 140ms delay and 200 ms delay. Figure 6a show the complete time. From

the diagram, the blue one is Round-Robin, the red one is Min-RTT, and the green one is our

MAB scheduler. The round-robin performs better than min-RTT with the same data rate.

We can see MAB performance is good compared to both min-RTT and round-robin. The

goodput shown in figure 6b also present that mab has a better performance in this scenario.

For the second scenario, we consider the transmission with different data rates and delays.

For subflow 0, we fix the data rate and delay with 50 Mbps and 20 ms. and for subflow 1,

17

we test with 10 Mbps 80ms delay, 10 Mbps 140ms, and 10Mbps, 200ms delay. From figure

7, we can see min-RTT perform better than round-robin, and our mab performs better in

both complete time and goodput.

(a) Complete Time (b) Average Goodput

Figure 6: s0 and s1: 25Mbps/80ms to 25Mbps/200ms

(a) Complete Time (b) Average Goodput

Figure 7: s0: 50Mbps/20ms, s1: 10Mbps/80ms to 10Mbps/200ms

From the experiment in these two scenarios, we can see that round-robin or min-RTT

can have good performance in one of them, which means Round-Robin does better with

the same data rate and min-RTT do better with different data rate. They cannot maintain

better performance in different scenarios, while our mab can do better in both scenarios,

which presents the adaptation of our scheduler.

18

5 Conclusion

The multipath scheduler is a fundamental mechanism that has a significant impact on the

performance of MPQUIC. To cope with the challenges of network heterogeneities, we formu-

late the scheduling problem with Multi-armed Bandit. we propose an adaptive multipath

scheduler that leverages an online learning mechanism. It consists of three key designs: (1)

A multi-armed bandit to generate the scheduling actions; (2) A comprehensive reward func-

tion to consider the network throughput for performance optimization; and (3) an online

learning algorithm to enable adaptive packet scheduling. It is computationally lightweight

and easily deployable. We implement the MAB-based scheduler in MPQUIC in ns-3 and

compare its performance with other default schedulers over both similar and distinct network

scenarios, which show the adaptive of the MAB-based scheduler outperforms the widely used

schedulers.

Due to the time limitation of a course project, we will strengthen our experiment in future

work. We first consider comparing with more state-of-art schedulers like BLEST, ECF, or

Peekaboo. Since our current scenario is stable, it may not present the performance of the

adaptive scheduler well. We will consider testing in more dynamic scenarios close to the

real world. On the other hand, we only consider the throughput as our rewards, while other

characteristics are related to the transmission performance. We will strengthen the definition

of rewards like congestion windows and error control. Another improvement of our work could

focus on the bandit algorithm. We currently just use the UCB, which predicted that the

rewards are getting immediately after the auction. However, in the network transmission,

the information we got is always delayed. So, the delayed rewards in MAB might match the

scheduler algorithm better.

19

References

[1] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley, “Improv-

ing datacenter performance and robustness with multipath tcp,” in Proceedings of the

ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11, 2011, p. 266–277.

[2] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and evaluation,” in Pro-

ceedings of the 13th International Conference on Emerging Networking EXperiments

and Technologies, ser. CoNEXT ’17, 2017, p. 160–166.

[3] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz, “Multipath

quic: A deployable multipath transport protocol,” in Proceedings of the IEEE Interna-

tional Conference on Communications (ICC), 2018, pp. 1–7.

[4] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “Blest: Blocking estimation-based mptcp

scheduler for heterogeneous networks,” in 2016 IFIP Networking Conference (IFIP Net-

working) and Workshops. IEEE, 2016, pp. 431–439.

[5] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “Ecf: An mptcp path

scheduler to manage heterogeneous paths,” in Proceedings of the 13th International

Conference on Emerging Networking EXperiments and Technologies, ser. CoNEXT

’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 147–159.

[Online]. Available: https://doi.org/10.1145/3143361.3143376

[6] X. Shi, L. Wang, F. Zhang, B. Zhou, and Z. Liu, “Pstream: Priority-based stream

scheduling for heterogeneous paths in multipath-quic,” in 2020 29th International Con-

ference on Computer Communications and Networks (ICCCN). IEEE, 2020, pp. 1–8.

[7] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “Wifi, lte, or both?

measuring multi-homed wireless internet performance,” in Proceedings of the 2014

Conference on Internet Measurement Conference, ser. IMC ’14. New York, NY,

20

https://doi.org/10.1145/3143361.3143376

USA: Association for Computing Machinery, 2014, p. 181–194. [Online]. Available:

https://doi.org/10.1145/2663716.2663727

[8] B. Jonglez, M. Heusse, and B. Gaujal, “Srpt-ecf: challenging round-robin for stream-

aware multipath scheduling,” in 2020 IFIP Networking Conference (Networking), 2020,

pp. 719–724.

[9] A. Rabitsch, P. Hurtig, and A. Brunstrom, “A stream-aware multipath quic

scheduler for heterogeneous paths,” in Proceedings of the Workshop on the

Evolution, Performance, and Interoperability of QUIC, ser. EPIQ’18. New York,

NY, USA: Association for Computing Machinery, 2018, p. 29–35. [Online]. Available:

https://doi.org/10.1145/3284850.3284855

[10] X. Shi, F. Zhang, and Z. Liu, “Prioritybucket: A multipath-quic scheduler on

accelerating first rendering time in page loading,” in Proceedings of the Eleventh ACM

International Conference on Future Energy Systems, ser. e-Energy ’20. New York,

NY, USA: Association for Computing Machinery, 2020, p. 572–577. [Online]. Available:

https://doi.org/10.1145/3396851.3402923

[11] M. M. Roselló, “Multi-path scheduling with deep reinforcement learning,” in 2019 Eu-

ropean Conference on Networks and Communications (EuCNC), 2019, pp. 400–405.

[12] H. Wu, Ö. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo: Learning-based mul-

tipath scheduling for dynamic heterogeneous environments,” IEEE Journal on Selected

Areas in Communications, vol. 38, no. 10, pp. 2295–2310, 2020.

[13] H. Wu, G. Caso, S. Ferlin, Alay, and A. Brunstrom, “Multipath scheduling for 5g

networks: Evaluation and outlook,” IEEE Communications Magazine, vol. 59, no. 4,

pp. 44–50, 2021.

[14] A. De Biasio, F. Chiariotti, M. Polese, A. Zanella, and M. Zorzi, “A quic implementation

for ns-3,” in Proceedings of the 2019 Workshop on Ns-3, ser. WNS3 2019, 2019, p. 1–8.

21

https://doi.org/10.1145/2663716.2663727
https://doi.org/10.1145/3284850.3284855
https://doi.org/10.1145/3396851.3402923

	Introduction
	Background and Motivation
	MPQUIC
	Scheduler
	Problem Verification
	Bandit Algorithm Analysis

	Problem Description and Solution Framework
	Problem Formulation
	Current Algorithm

	Performance Evaluation
	Experiment Setup
	Performance Analysis

	Conclusion

